2,081 research outputs found

    Thermal phase diagrams of columnar liquid crystals

    Full text link
    In order to understand the possible sequence of transitions from the disordered columnar phase to the helical phase in hexa(hexylthio)triphenylene (HHTT), we study a three-dimensional planar model with octupolar interactions inscribed on a triangular lattice of columns. We obtain thermal phase diagrams using a mean-field approximation and Monte Carlo simulations. These two approaches give similar results, namely, in the quasi one-dimensional regime, as the temperature is lowered, the columns order with a linear polarization, whereas helical phases develop at lower temperatures. The helicity patterns of the helical phases are determined by the exact nature of the frustration in the system, itself related to the octupolar nature of the molecules.Comment: 12 pages, 9 figures, ReVTe

    FGFs: Neurodevelopment’s Jack-of-all-Trades – How Do They Do it?

    Get PDF
    From neurulation to postnatal processes, the requirements for FGF signaling in many aspects of neural precursor cell biology have been well documented. However, identifying a requirement for FGFs in a particular neurogenic process provides only an initial and superficial understanding of what FGF signaling is doing. How FGFs specify cell types in one instance, yet promote cell survival, proliferation, migration, or differentiation in other instances remains largely unknown and is key to understanding how they function. This review describes what we have learned primarily from in vivo vertebrate studies about the roles of FGF signaling in neurulation, anterior–posterior patterning of the neural plate, brain patterning from local signaling centers, and finally neocortex development as an example of continued roles for FGFs within the same brain area. The potential explanations for the diverse functions of FGFs through differential interactions with cell intrinsic and extrinsic factors is then discussed with an emphasis on how little we know about the modulation of FGF signaling in vivo. A clearer picture of the mechanisms involved is nevertheless essential to understand the behavior of neural precursor cells and to potentially guide their fates for therapeutic purposes

    Supersolid phases in the one dimensional extended soft core Bosonic Hubbard model

    Full text link
    We present results of Quantum Monte Carlo simulations for the soft core extended bosonic Hubbard model in one dimension exhibiting the presence of supersolid phases similar to those recently found in two dimensions. We find that in one and two dimensions, the insulator-supersolid transition has dynamic critical exponent z=2 whereas the first order insulator-superfluid transition in two dimensions is replaced by a continuous transition with z=1 in one dimension. We present evidence that this transition is in the Kosterlitz-Thouless universality class and discuss the mechanism behind this difference. The simultaneous presence of two types of quasi long range order results in two soliton-like dips in the excitation spectrum.Comment: 4 pages, 5 figure

    FIB-SEM Nanotomography in Materials and Life Science at EPFL

    Get PDF
    Extended abstract of a paper presented at Microscopy and Microanalysis 2010 in Portland, Oregon, USA, August 1 - August 5, 201

    3D EDX microanalysis by FIB-SEM: Elemental quantification enhancement

    Get PDF
    Extended abstract of a paper presented at Microscopy and Microanalysis 2012 in Phoenix, Arizona, USA, July 29 - August 2, 201
    corecore